Александр Гордон Диалоги (август 2003 г. )

Александр Гордон — Диалоги (август 2003 г. )


Жанр книги: Прочая научная литература (то, что не вошло в другие категории)

СодержаниеСакральная физика → Часть 3

Навигация
[ Часть 3. Глава 12. ]

Но для того чтобы ответить на вопрос, что же лежит в основе Мира, нужно посмотреть на этот Мир как на единое целое. Необходимо целостное описание Мира. То есть отвлечься от деталей и увидеть целое.

Представьте себе, что мы приходим в картинную галерею и нас подводят к картине, которая находится перед нашим носом на расстоянии десяти сантиметров. Мы видим пятна, краски, переходим в другое место – снова пятна, краски. А в целом картину мы не увидим. Для этого нужно отойти от картины на несколько метров. Вот так же и нужно посмотреть на Мир, отойдя от него. Значит, нужна математика, которая наоборот основана не на http://www.oz-comp.ru анализе, не на расщеплении, а на синтетическом видении мира.

И вот оказывается, такая математика (исчисление кортов) уже создана. Это и есть Теория физических структур. У меня появились талантливые ученики и последователи. И через несколько лет в Новосибирске, в Горно-Алтайске, в Барнауле, в Москве появилась целая школа по Теории физических структур.

В Московском университете к нашей школе близко «неслиянно и нераздельно» примыкает научное направление, развиваемое известным физиком-теоретиком, профессором кафедры теоретической физики МГУ Юрием Сергеевичем Владимировым – моим близким другом и коллегой.

Итак, нужно воспользоваться новым математическим исчислением кортов, которое оперировало бы не с отдельными элементами, а с конечными множествами – кортами. Заметьте – в современной физике никто не рассматривает одновременно множество разных физических объектов. Современная наука занимается рассмотрением отдельных физических объектов и отдельных явлений.

При этом мне вспоминается моя последняя и единственная встреча с академиком Владимиром Александровичем Фоком, к которому я приехал в 1970 году в Ленинград, чтобы рассказать ему о своих работах по Теории физических структур и, в частности, о новой точке зрения на закон Ньютона.

Он встретил меня весьма доброжелательно, пригласил к себе домой и приготовился внимательно выслушать меня. Но когда я сказал:

– Рассмотрим два тела и две пружинки и измерим четыре ускорения …

Здесь он перебил меня:

– Простите, о чём идёт речь? о механике материальной точки? или о механике системы, состоящей из двух материальных точек?

Я ответил:

– Речь идёт о механике материальной точки, то есть о новой точке зрения на закон Ньютона.

– Но почему же вы рассматриваете два тела? Нет, я вас не понимаю!  – и выключил свой слуховой аппарат, дав понять тем самым, что дальнейший разговор на эту тему лишён для него всякого смысла.

Действительно, очень трудно взглянуть на хорошо известную ещё с детства механику с существенно иной, непривычной точки зрения.

Чтобы объяснить, что такое корт, я начну, пожалуй, с наиболее наглядного примера.

Что такое физический закон? Не закон Ньютона и не закон Ома, а физический закон вообще? Чтобы ответить на этот вопрос, начнём с простейшего примера – с законов, лежащих в основании геометрии евклидовой прямой, геометрии евклидовой плоскости и геометрии трёхмерного евклидова пространства.

Возьмём две произвольные точки, лежащие на прямой,  – двухточечный корт (корт – сокращённая форма слова кортеж. Кортеж – конечная последовательность элементов какого-либо множества), и измерим расстояние между ними. Это расстояние ничем не ограничено и может меняться от нуля до бесконечности. Никакого закона ещё нет.

Но если мы возьмём трёхточечный корт и измерим три расстояния между его тремя точками, то мы столкнёмся с качественно новой ситуацией. Три точки на прямой можно рассматривать как вершины «сплюснутого» треугольника, площадь которого равна нулю при любом расположении точек. Но с другой стороны, площадь треугольника зависит от длин трёх его сторон (формула Герона). Следовательно, между тремя расстояниями существует определённая связь, которая и есть простейший закон одномерной евклидовой геометрии.

Рассмотрим теперь трёхточечный корт на евклидовой плоскости и измерим три расстояния между его тремя точками. В этом случае площадь треугольника может меняться от нуля до бесконечности и, следовательно, между тремя расстояниями нет никакой связи.

Навигация
[ Часть 3. Глава 12. ]

Закладки

Контактная форма

Для связи заполните все обязательные поля.


Обратная связь © 2010 — www.margarita-gluzman.narod.ru

↑ Вверх

Hosted by uCoz